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Abstract. The fine structure of the intensity of very slow electron reflection from the surface
of a size-quantized film is considered. It is shown that in the case of grazing incidence the
resonance contribution to the fine structure is due to the non-parabolic dispersion of the Rydberg-
type bands caused by their hybridization with the states of the size-quantized film. The existence
of such bands is supported by calculation of the energy bands lying near the continuous spectrum
boundary for a Cu(001) film. It is demonstrated that the scattering intensity of the primary beam
may strongly depend on its azimuthal orientation.

1. Introduction

Investigation of the fine structure of low-energy electron reflection (LEER) promoting the
understanding of the processes of low-energy electron–solid interaction is important in many
fields of solid state physics. At very low energies (0–20 eV) the LEER spectra contain a
wealth of information about the processes of elastic and inelastic scattering, the structure of
the potential barrier, and the electron states of empty bands. The mechanism of the LEER
fine-structure formation has been studied in [1–6]. As a rule, the appearance of LEER
oscillations is attributed to either the resonance scattering [1–5] or a special interference
process [6]. Le Bosseet al [6] contend that, due to the rather strong absorption of the
electron beam, the contribution of the resonance mechanism to the effect observed is small
and, in most cases, can be neglected. However, more recent experiments on crystals of
noble gases [7], investigation of the quantum size effect (QSE) in the low-energy electron
scattering by thin films [8], the sensitivity of low-energy electron transmission (LEET)
spectra to the electronic structure of a scattering crystal [9, 10] suggest that the empty
energy bands near the continuous spectrum boundary substantially affect the character of
electron scattering, which is not taken into account in the interference model. This prompted
us to reconsider the effect of the energy band structure of a size-quantized crystalline film
on the formation of the fine structure of LEER spectra. It should be stressed that in the
present paper we are dealing with the LEER fine structure of size-quantized films in the
very-low-energy range well below the non-specular beam emergence threshold. The critical
and detailed analysis of threshold effects given in [6] showed that the fine-structure features
in the LEER intensity from bulk (i.e. non-size-quantized) crystal surfaces are mainly due
to a special interference process, and the resonance contribution is negligible. However, in
that paper it was demonstrated that, even in the case of scattering on the surface of a bulk
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632 Y P Chuburin and G V Wolf

W(001) specimen, the first peak near 3 eV does not result from the interference mechanism.
It arises partially because the incidence energy is going across the lower band edge.

It is worth emphasizing that the conclusions of [6] are valid only for bulk specimens,
when the assumptions of projected surface band structure and asymptotic behaviour of the
wavefunctions of a semi-infinite crystal hold true. In the case of a size-quantized film these
assumptions are no longer valid, and the problem must be reinvestigated. In principle, the
LEER fine structure can be obtained within an accurate dynamic calculation which involves
numerical solution of the Lippmann–Schwinger equation (equation (1) in section 2). This
procedure, however, makes it difficult to separate out the contributions to the intensity from
different physical mechanisms. We use a different approach based on the investigation of
analytical properties of the scattering amplitude. A similar approach was used in [1, 2]
where, however, the one-dimensional treatment of the problem (a two-dimensional (2D)
free-electron model) was adapted to describe the Rydberg states with a quadratic dispersion
law. As shown below, it is important to take into account the three-dimensional (3D)
character of the crystalline potential and anisotropic non-parabolic dispersion of upper bands.
A generalization of the theory to the 3D case performed in [11, 12] and briefly discussed
in section 2 cannot be obtained by analogy with the single-centre scattering as stated in
[13]. The use of such an approach together with an energy band calculation for a Cu film
presented in section 3 provides a better insight into the origin of the LEER fine structure
of size-quantized films. Conclusions are given in section 4. Some mathematical results are
carried over to the appendix.

2. Low-energy electron scattering by the 3D potential of a crystalline film

In the film unit cell(�) symmetrical with respect to the planez = 0, the states of a scattered
electron are described by the equation

9k(r, E) exp(ip · r) +
∫

�

Gk(r, r′; E)V (r′)9k(r
′, E) dr′ (1)

wherek is the 2D quasi-momentum of the electron,E = p2 is its energy,p = (k,
√

E − k2),
V (r) is the optical potential [14] andGk(r, r′; E) is the structure Green function [15, 16]
given by

Gk(r, r′; E) = 1

2S

∑
µ

exp[i(k + Kµ) · (u − u′)
exp[i

√
E − (k + Kµ)2|z − z′|]

i
√

E − (k + Kµ)2
. (2)

Here S is the area of the unit mesh,Kµ is the reciprocal-net vector andu (u′) is the
surface-parallel component of the vectorr (r′).

A crystalline analogue of the reflection amplitude at energies below the emergence of a
non-specular beam(k2 < E < (k + Kµ)2) has the form [11]

a−(p) =
∫

�

exp(−ik · u) exp(ipzz) V (r)9k(r, E) dr. (3)

According to [12], at the pointp0 = (k, 0)

a−(p0) = 0 (4)

and therefore the scattering amplitude has no pole atpz = 0 contrary to what might be
expected from the fact that the Green functions of the operators−1 and−1 + V (r) have
poles at this point. In virtue of the above and since atE = (k + Kµ)2 the Green function
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Gk has singularities resulting in diffraction, the conventional approach of the single-centre
scattering theory is not applicable in this case in contrast with the statement in [13].

The probability of specular reflection is [11]

P − = 2π3
∫ |C(p)a−(p)|2

p2
z

dp (5)

whereC(p) describes the incident particle momentum distribution. According to (4),

a−(p) = pza(p) (6)

where a(p) is an analytical function in the vicinity of the pointp0. Then, if C(p) is
‘sufficiently localized’ nearp1 and if p1z is small, we have

P − ≈ |a(p1)|2. (7)

In the ‘resonance’ case of the existence of a band of bound or quasi-stationary states near
the continuous spectrum boundary, the scattering amplitude as well as the wavefunction
9k(r, E) ≡ 9(r, p) have a pole atpz =

√
En(k) − k2 [11, 12], whereEn(k) is the

dispersion law of the band. Then

a(p) = b(p)

pz −
√

En(k) − k2
(8)

whereb(p) is analytical in the vicinity ofp0. Substituting (8) into (7) and separating the
real partEn(k) and the imaginary partγn(k) of the energy, we get for the intensity of a
grazing specular-reflected beam

I (p) = |B(p)|2
(
√

E − k2 −
√

|En(k) − k2|)2 + 2 Re
√

(E − k2)(k2 − En(k)) + δ2(p, γn)

=


|B(p)|2

E − En(k) + δ2
if En(k) < k2

|B(p)|2
(
√

E − k2 −
√

En(k) − k2)2 + δ2
if En(k) > k2

(9)

where |B(p)| has small variations nearp0. The expression for the scattering intensity
(9), obtained by rigorous mathematical treatment, is convenient for theoretical analysis as
it determines the energy region in which the LEER structure arises due to the resonance
contribution. However, because the ‘smooth’ functionB(p) is indeterminate, this expression
is unsuitable for a direct non-parametric calculation of the intensity which can be obtained
by consistent dynamic calculations incorporating the band structure of the film.

The formulae presented in this section have been obtained in [11, 12] on the assumption
of exponential asymptotics of the potentialV (r). The case of the image potential asymptotic
behaviour is considered in the appendix where the expressions for the observable quantities
including (9) are shown to remain valid.

3. The energy band structure of unoccupied states of a FCC Cu(001) monolayer

The energy bands of a Cu monolayer have been calculated in a film version of the
Green function method [15, 16]. The film potential was constructed on the basis of the
electron density parametrized according to the data of a self-consistent calculation of the Cu
monolayer conduction band [18]. The Coulomb contribution to the potential was calculated
by the method in [17], while the Wigner interpolation formula [18] valid in the limits of large
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and small densities was used for the exchange–correlation contribution. Two versions of the
calculation are presented. The first (figure 1) corresponds to the exponential asymptotics of
the crystalline potential following from a local-density approximation (LDA) for exchange
and correlation. In the second variant (figure 2) a potential that correctly includes the image
form for large distances was employed. In constructing this potential we followed the idea
of [19], where the local exchange–correlation potential in a metalVxc was joined on the
image planez = z0 to a potential of the form

V NL
xc (z) = −1 − [1 + 1

4b(z − z0)] exp(−b(z − z0))

2(z − z0)
. (10)

This expression results from the integration of the spherical potential produced by the local
exchange–correlation hole. We have the somewhat modified expression (10), introducing
a parametera (replacing in square brackets14b by b/a) which allows smooth joining of
V NL

xc andVxc at anyz0. As predicted by jellium model theories for Cu,z0 = 3 au [20, 21].
The increase inz0 to the value of 8.6 au, which is in some sense optimal for describing
the LEED structure in the modified image barrier model [22], leads to a slight band shift
(table 1); this, as shown later, does not affect definitive conclusions.

Table 1. The dependence of the binding energy of upper bands on the image plane positionz0:
+, even parity states;−, odd parity states. The energy is in electronvolts with respect to the
vacuum zero.

Binding energy (eV)

n Parity z0 = 8.6 au z0 = 3 au [24]

3 − −0.076 −0.065 −0.09
2 + −0.289 −0.183 −0.19
1 − −0.607 −0.625 −0.62

+ −1.134 −1.183 —

The band structure below−3 eV (figure 1) fits the calculations available [18, 23]. The
unoccupied states are far less investigated. To our knowledge, there does not exist as yet
any complete realistic calculation of dispersion curvesEn(k) above the vacuum zero. The
occurrence of energy bands near the continuous spectrum boundary which is defined by the
paraboloidE = k2 is a noteworthy feature of figures 1 and 2.

In the case of asymptotic behaviour (10) (figure 2) the states below 2 eV are almost
identical with those shown in figure 1; so they are not present in figure 2. Of interest is the
appearance of new bands of Rydberg states at point0 at energies−0.065 and−0.183 eV.
At 0 the energies of the states of upper bands are in good agreement with then = 1, 2, 3
members of the Rydberg series obtained in [24] (table 1). However, as immediately follows
from comparison of figures 1 and 2, then = 1 state (−0.62 eV) is a ‘crystal-derived’ state
in terms of [24]. The electron density distribution for this state is similar to that obtained in
[24], i.e. 94.5% of the charge of this state is localized outside the film and its wavefunction
has a single maximum beyond the crystal edge at about 8 au with respect to the centre
of the last row of atoms. In essence, this is an image state arising even in the LDA for
exchange and correlation. The possibility of finding the low-energy image states within the
framework of the LDA has been demonstrated in [25] (Ag(001)) and in [26] (Al(001) and
Al(111)). The absence of these states in the LDA potential of [24] may be attributed to
the influence of the particular form of LDA on the states of upper bands which has yet
to be analysed (it is known that for the conduction band states this influence is substantial
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Figure 1. The energy bands of a Cu(001) monolayer in the case of exponential asymptotics
of the crystal potential: ——, even parity states; – – –, odd parity states;- - - -, continuous
spectrum boundary(E = k2).

and may produce an energy-term shift of several electronvolts), or to the use of the LAPW
methods with parameters verified with respect to the occupied part of the conduction band.
Near the vacuum zero, at the edge of the linearization region the accuracy of calculations
considerably diminishes [27] and becomes comparable to the binding energies of upper
bands. Further hypotheses could be proposed, but this is irrelevant for the discussion that
follows. If there exist several bands near the continuous spectrum boundary, the possibility
of the fine-structure resolution is determined by the energy broadening of these bands (δ

in equation (9)). As shown in [2, 5, 14], the quantityδ depends to a large extent on the
spatial localization of states which is closely related to the physical origin of the bands
under consideration.

At the centre of the Brillouin zone (BZ) the effective masses of the bands shown in
figure 2 are close to the free-electron massm. For the above-discussed term whose binding
energy atk = 0 is e = 0.62 eV,m∗ = 0.97m, which agrees with the value ofm∗ = 0.98m
obtained in [24]. We should note that, in the case of size-quantized films at very low
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Figure 2. The energy bands of a Cu(001) monolayer in the case of asymptotic behaviour
corresponding to the image potential form for large distances: ——, even parity states; – – –, odd
parity states; - - - -, continuous spectrum boundary(E = k2).

energies of the primary electron beam(k + Kµ)2 > E > k2, the conclusion [6] that
the resonance contribution to the reflection intensity is small for energies lying in the gap
of bulk bands does not hold true (the sum overKµ is absent in equation (12) [6] and
|M−+

pp | ≈ 1). Moreover, the concept of asymptotic behaviour of the electron states in a
semi-infinite crystal is unlikely to work in the case of size-quantized films.

Let us consider the resonance contribution to the scattering intensity from the bands
near the continuous spectrum boundary which satisfy the conditionEn(k) < k2. For the
quadratic dispersion law, as in the 2D free-electron model,

En(k) = 1

2m∗ k2 − en. (11)

In the energy range under considerationE < en/[sin2 ϑ(1/2m∗ − 1)] (ϑ is the polar angle
for incident particles) the scattering intensity (9)

I (E, ϑ) = B2/[E(1 − sin2 ϑ/2m∗) + en + δ2] (12)

is a monotonic function of energy, and the resonance contribution of such a band to the
LEER fine structure is absent. The situation changes, however, if the dispersion of the band
is non-parabolic, as nearkg corresponding to the band hybridization range (figure 2). In
this case the condition

∂I/∂E = −B2[2E − ∇kE(k) · k]/[2E(E − En(k) + δ2)2] = 0 (13)

can be satisfied, and the fine structure appears. Indeed, assuming for simplicity that the
azimuthal angle of incidenceϕ = 0, in the vicinity of the band extrema we have

En(k) = k2/2m∗ + En(0) En(k) = −(k − kg)
2/2M∗ + En(kg). (14)
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The intensity extremum is reached atE = Eextr = k2
extr/ sin2 ϑ , wherekextr is the root of

the equation

2k − [∂E(k)/∂k] sin2 ϑ = 0 (15)

i.e. in the case of grazing incidence the surface projection of the electron beam velocity must
be close to the electron velocity in the ‘resonance’ band. In the band under consideration
(En(0) = −0.62 eV) the electron velocity∂En/∂k = 0 at k = 0 and k = kg and, if
∂2En/∂

2k monotonically decreases on [0, kg] (V (k) = ∂En/∂k is a convex-up function), a
non-zero solution of (15) exists when in the vicinity ofk = 0:

[∂E(k)/∂k] sin2 ϑ > 2k or sin2 ϑ > m∗/m. (16)

For grazing incidence (ϑ = π/2 + α, α being small) this yields

α <
√

2[1 − (m∗/m)1/2]. (17)

For m∗/m ≈ 1 the angleα is very small. In particular,α < 10◦ for the band with
m∗ = 0.97m. Eextr depends on the effective massM∗. It is easy to show that, if the
condition (16) is fulfilled, then

Eextr 6 k2/[sinϑ(M∗/m + 1)]2. (18)

With increasing film thickness the number of size-quantized bands which hybridize with
the band of Rydberg states increases. A typical situation is schematically shown in
figure 3. The extrema of theith hybridized band are at pointsk(i)

g1 and k(i)

g2, the distance
between which decreases with increasing number of layers. Since∂Ei/∂k < 0 beyond
the interval k(i)

g2 > k > k(i)

g1, the condition (15) can be satisfied only for energies

(k(i)

g2/ sinϑ)2 > E > (k(i)

g1/ sinϑ)2. In the vicinity of k(i)

g1 and k(i)

g2, (∂Ei/∂k) sinϑ < 2k;
therefore equation (15) may have two roots corresponding to the maximum and the minimum
of the reflection intensity. The above reasoning accounts for the observed increase in
frequency of the QSE peaks with increasing thickness [7, 8].

For the lowest band, according to first-order perturbation theory for almost degenerate
levels, we have

m/M∗ = −1 + 4|Pnm,x |2/1nm (19)

wherePnmx is the momentum matrix element between the states of themth andnth bands
belonging to the same irreducible representation of the wavevector group;1mn is the
magnitude of the hybridization gap at pointkg (figure 3). Hence, the effective massM∗

diminishes with increasing number of film layers, which in accordance with (18) leads to a
shift of Eextr towards larger energies up to the energy corresponding to intersection of the
Rydberg-type band with the projection of bulk bands, and the interference processes playing
a leading part in formation of the LEER threshold effect increase in importance [6].

It should be noted that the dispersions of the resonance bands are different for the0–X
and 0–M directions of the BZ (figure 2). The absence in the considered energy range of
‘crystal-derived’ bands of odd parity in the0–M direction results in quadratic dispersion of
the above-discussed band of Rydberg states and hence in a zero-resonance contribution to
the LEER for a given azimuthal orientation of the primary beam.

4. Conclusions

On the basis of the analytical properties of the scattering amplitude of a crystalline film,
we have investigated and explained the fine structure observed in very-low-energy electron



638 Y P Chuburin and G V Wolf

Figure 3. Schematic representation of the band crossing for a multilayer film.

reflection (VLEER) spectra of a size-quantized film. It is found that, in the case of grazing
incidence of very slow electrons with energies well below the non-specular beam emergence
threshold, the VLEER spectra structure of thin films depends on the dispersion of the bands
near the continuous spectrum boundary. The appearance of the low-energy fine structure is
shown to be due to the non-parabolic dispersion of this bands caused by hybridization of
the bands of Rydberg and ‘crystal-derived’ types. This is a phenomenon of resonance rather
than interference nature, as is the case in the threshold effect [6]. A strong dependence of
VLEER spectra on the azimuthal orientation of the primary beam can appear as a result of
the resonance band anisotropy due to the 3D character of the crystalline potential.

Unfortunately, no experimental data on VLEER for Cu thin films in the incident energy
range well below the non-specular beam emergence threshold have come to our notice. On
the other hand, as seen from the results in sections 2 and 3, the generality of the considered
mechanism of formation of the VLEER spectra structure is sufficiently large that it can take
place not only in metals but also in size-quantized dielectric films, if there exist resonance
bands of one or other nature. From this standpoint, the results obtained agree with the
LEER experiment on Ar thin films, which shows that the structures in VLEER spectra
reflect essentially the band-structure characteristic of the Ar surface [7]. The band-structure
effects are clearly seen in the LEER spectra obtained by Baderet al [30] for Ar, Kr, Xe,
N2, CO and O2 films, which also provides support for our results.

The importance of the energy band structure for the formation of the QSE of d-band
metals is known. Nevertheless, on the basis of calculation of the unoccupied bands ofinfinite
crystals, the free-electron model is frequently supposed to be suitable for the analysis [8]. In
the present paper, we attempted to show the importance of taking into account the deviation
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of the resonance band dispersion from the free-electron dispersion law, while interpreting
the LEER data for thin films in the energy range of interest.

Appendix

Consider for simplicity the potentialV (z) averaged overx, y. Let V (z) = −a/|z| for
|z| > d, wherea, d > 0. Define the ‘cut’ potentialsVN(z), N = 1, 2, . . . as coinciding with
V (z) for |z| 6 dN , equal to zero for|z| > dN + E (whereE > 0 and limN→∞ dN = ∞) and
being smooth functions. In the case ofE > k2 the Bloch solutions of the equation

−1ψ + V ψ = Eψ (A1)

for small λ = E − k2 have the form

ψ(r) = exp(ik · u)ϕ(z)

whereϕ(z) satisfies the one-dimensional Schrödinger equation

−ϕ′′ + V ϕ = λϕ. (A2)

According to [28] there exist solutions of equation (A2) which forz > d have the form

ϕ1,2(z) = (λ − V (z))−1/4 exp

(
± i

∫ z

a

√
λ − V (ξ) dξ

)
+ O(z−2). (A3)

Analogous expressions exist for the potentialsVN(z), andN = 1, 2, . . .. In this case the
quantity O(z−2) decreases uniformly inN , and all formulae permit differentiation.

Consider the solution of equation (A1) withV = VN corresponding to a scattered state.
We have

ψ(N)(r) =
{

exp(ik · u)[exp(i
√

λz) + A(λ) exp(−i
√

λz)] z 6 −dN − E
B(λ) exp(ik · u) exp(i

√
λz) z > dN + E .

(A4)

A(λ) andB(λ) are the coefficients of reflection and transmission, respectively.
In view of the above, for sufficiently largeN there exists a solutionψ(r) of

equation (A1) which, together with the derivative with respect toz, in the neighbourhood of
the pointz = −dN can be arbitrarily close toψ(N)(r). Then according to (A3) atz → −∞
ψ(r) ≈ λ−1/4 exp(ik · u){exp[i(

√
λz + (a/2

√
λ) ln(−z/dN))]

+A(λ) exp[−i(
√

λz + (a/2
√

λ) ln(−z/dN))]}. (A5)

Whenz → ∞, by virtue of the continuous dependence of the ordinary differential equations
for the initial conditions we have

ψ(r) ≈ λ−1/4 exp(ik · u)B(λ) exp(i(
√

λz + (a/2
√

λ) ln(z/dN)). (A6)

Thus, in the case of the potentialV (z), the quantityA(λ) exp(−i(a/2
√

λ) ln(−z/dN)) fulfils
the role of the reflection amplitude, and in the limitN → ∞ the observable quantities remain
the same (unchanged) (cf [29]).

References

[1] McRae E G 1971Surf. Sci.25 491
[2] McRae E G 1979Rev. Mod. Phys.51 541
[3] Deitz R E, McRae E G and Campbell R L 1980 Phys. Rev. Lett.45 1139
[4] Rundgren J and Malmstroem G 1977Phys. Rev. Lett.38 836
[5] Echenique P H and Pendry J B 1978J. Phys. C: Solid State Phys.11 2065



640 Y P Chuburin and G V Wolf

[6] Le Bosse J C, Lopez J, Gaubert C, Gauthier Y and Baudoing R 1982J. Phys. C: Solid State Phys.15 6087
[7] Michaud M, Sanche L, Gaubert C and Baudoing R 1988Surf. Sci.205 447
[8] Park R L, Jonker B T, Iwasaki H and Zhu Q-G 1985Appl. Surf. Sci.22–31
[9] Plenkiewicz B, Plenkiewicz P, Perluzzo G and Jay-Gerin J-P 1985Phys. Rev.B 32 1253

[10] Jay-Gerin J-P, Plenkiewicz B, Plenkiewicz P, Perluzzo G and Sanche L 1985Solid State Commun.55 1115
[11] Chuburin Yu P 1987Teor. Matem. Fiz.72 120
[12] Wolf G V, Chuburin Yu P and Rubzova L A 1991PoverhnostN10 81
[13] Gersten J I and McRae E G 1972Surf. Sci.29 483
[14] Pendry J B 1974Low Energy Electron Diffraction(New York: Academic)
[15] Kar N and Soven P 1975Phys. Rev.B 11 3761
[16] Kohn W 1975Phys. Rev.B 11 3756
[17] Wolf G V and Rubzova L A 1985PoverhnostN4 27
[18] Smith J R, Gay J G and Arlinghaus F J 1980Phys. Rev.B 21 2201
[19] Serena P A, Soler J M and Garcia N 1984Phys. Rev.B 34 6767
[20] Appelbaum J A and Hamann D R 1972Phys. Rev.B 6 1122
[21] Lang N D and Kohn W 1973Phys. Rev.B 7 3541
[22] Read M N 1985Appl. Surf. Sci.22–348
[23] Dubrovskii O I, Kurganskii S I, Rubtsova L A and Wolf G V 1990Phys. Status Solidib 161 697
[24] Hulbert S L, Johnson P D, Weinert M and Garrett R F 1986Phys. Rev.B 33 760
[25] Konig U, Weinberger P, Rediger J, Erschbauer H and Freeman A J 1989Phys. Rev.B 39 7492
[26] Silkov V M, Jurczyszyn L, Chulkov E V and Steslicka M 1994PoverhnostN7 36
[27] Koelling D D and Arbman G O 1975J. Phys. F: Met. Phys.5 2041
[28] Fedoruk M V 1985 Ordinary Differential Equations(Moscow: Nauka) (in Russian)
[29] Taylor J R 1972Scattering Theory. The Quantum Theory of Nonrelativistic Collisions(New York: Wiley)
[30] Bader G, Perluzzo G, Caron L G and Sanche L 1984Phys. Rev.B 30 78


